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Abstract

La construction des graphes de plus proches voisins est un problème crucial pour nombre d’applications,
notamment celles impliquant des algorithmes d’apprentissage et de fouille de données. Bien qu’il existe
certain travaux visant à résoudre le problème dans des environnements centralisés, ils en restent néanmoins
limités en raison du volume croissant des données ainsi que leur dimensionalité. Dans cet article, nous
proposons une méthode basée sur des fonctions de hachage pour la construction des graphes de plus proches
voisins. La méthode proposée est distribuable et scalable, aussi bien en volume qu’en dimensionalité. Par
ailleurs, l’utilisation d’une nouvelle famille de fonctions de hachage, RMMH, garantit l’équilibe des charges
en environnements parallèles et distribués.
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1 Introduction

Given a set X of N objects, the K-Nearest Neighbor Graph consists of the vertex set X and the set of edges
connecting each object from X to its K most similar objects in X under a given metric or similarity measure.
Efficiently constructing the K-NNG of large datasets is crucial for many applications involving feature-rich
objects, such as images, text documents or other multimedia content. Examples include query suggestion in
web search engines [17], collaborative filtering [1] or event detection in multimedia User Generated Contents.
The K-NNG is also a key data structure for many established methods in data mining [4], machine learning
[3] and manifold learning [19]. Overall, efficient K-NNG construction methods would extend a large pool of
existing graph and network analysis methods to large datasets without an explicit graph structure.

In this paper we investigate the use of high dimensional hashing methods for efficiently approximating
the K-NNG, notably in distributed environments. Recent works [21, 9] have shown that the performances of
usual hashing-based methods are not as good as expected when constructing the full K-NNG (rather than
only considering individual top-K queries). Recently, Dong et al.[9] even show that LSH and other hashing
scheme can be outperformed by a radically different strategy, purely based on query expansion operations [9],
without relying on any indexing structure or partitioning method. Our work provides evidence to support
hashing based methods by showing that such observations might be mitigated when moving to more recent
hash function families.

Our new KNN-join method is notably based on RMMH [12], a recent hash function family based on
randomly trained classifiers. In this paper, we discuss the importance of balancing issues on the performance
of hashing-based similarity joins and show why the baseline approach using Locality Sensitive Hashing (LSH)
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and collisions frequencies does not perform well (section 3). We then introduce our new K-NNG method based
on RMMH (section 4). To further improve load balancing in distributed environments, we finally propose a
distributed local join algorithm and describe its implementation within the MapReduce framework.

2 Related work

At first, the K-NNG problem can be seen as a nearest neighbors search problem where each data point
itself is issued as a query. The brute-force approach, consisting in N exhaustive scans of the whole dataset,
has the cost O(N2). Its practical usage is therefore limited to very small datasets. Building an index and
iteratively processing the N items in the dataset with approximate Nearest Neighbors search techniques is an
alternative option that might be more efficient. Approximate nearest-neighbor algorithms have been shown
to be an interesting way of dramatically improving the search speed, and are often a necessity [20, 7]. Many
approximate NN methods were then proposed including randomized kd-trees [18], hierarchical k-means [16] or
approximate spill-trees [15]. Overall, one of the most popular approximate nearest neighbor search algorithms
used in multimedia applications is LSH [8]. The basic method uses a family of locality-sensitive hash functions
composed of linear projections over randomly selected directions in the feature space.

In addition, the usual approximate Nearest Neighbors search methods, some recent studies focus more
specifically on the K-NNG construction problem as a whole. In the text retrieval community, recent studies
[2, 21] focused on the ε-NNG construction in which one is only interested in finding pairs whose similarity
exceeds a predefined threshold. In [21], the authors present a permutation based approach both to filter
candidate pairs and to estimate the similarity between vectors. However, their approach is only applicable on
sparse vectors. Very recently, Dong et al. [9], proposed the NN-Descent algorithm, an approximate K-NNG
construction method purely based on query expansion operations and applicable to any similarity measure.
Their experiments show that their approach is more efficient than other state-of-the-art approaches. However,
designing an efficient distributed version of this method is not trivial limiting its practical scalability as it
requires the entire dataset to be loaded into a centralized memory.

3 Hashing based K-NNG construction

3.1 Notations

Let us first introduce some notations. We consider a dataset X of N feature vectors x lying in a Hilbert space
X. For any two points x,y ∈ X , we denote as κ : X2 → R a symmetric kernel function satisfying Mercer’s
theorem, so that κ can be expressed as an inner product in some unknown Hilbert space through a mapping
function Φ such that κ(x,y) = Φ(x).Φ(y).

If we denote as NK(x) the set of the K nearest neighbors of x in X according to κ, then the K-Nearest
Neighbor Graph on X is a directed graph GK(X , E) connecting each element to its K Nearest Neighbors, thus:
E = {(u,v),u ∈ X ,v ∈ NK(u)}.

We generally denote as H, a family of binary hash functions h : X→ {−1, 1}. If we consider hash function
families based on random hyperplanes we have: h(x) = sgn (w.x + b), where w ∈ X is a random variable
distributed according to pw and b is a scalar random variable distributed according to pb. When working in
the Euclidean space X = Rd and choosing pw = N (0, I) and b = 0, we get the popular LSH function family
sensitive to the inner product [5, 13]. In this case, for any two points q,v ∈ Rd we have:

Pr [h(q) = h(v)] = 1− 1

π
cos−1

(
q.v

‖q‖ ‖v‖

)

2



Thus, the collision probability of any two items increases with their inner product (κ(q,v) = q.v). More
generally, any LSH function family has the property:

Pr [h(q) = h(v)] = f (κ(q,v)) (1)

where f(κ) is the sensitivity function, increasing with κ.

3.2 LSH based K-NNG approximation

Let us consider L hash tables, each constructed from the concatenation of p hash functions built from an LSH
family H. The collision probability of any two items q,v in one table is:

Pr [h(q) = h(v)] = [f (κ(q,v))]
p

(2)

where h(q) and h(v) denote p-length binary hash codes. The total number of collisions in any set of L hash
tables, denoted as nq,v, is a random variable distributed according to a binomial distribution with parameters
L (the number of experiments) and fp (the probability of success of each Bernouilli experiment). The expected
number of collisions in L hash tables is therefore:

n̄q,v = E[nq,v] = L. [f (κ(q,v))]
p

The empirical number of collisions in L tables, denoted as n̂q,v, can be seen as an estimator of this value. And
since the sensitivity function f is supposed to be an increasing function with κ, it is easy to show that:

κ(q,v1) < κ(q,v2)⇔ E[n̂q,v1
] < E[n̂q,v2

] (3)

The top-K neighbors of any item x ∈ X according to κ can therefore be approximated by the top-K items
ranked according to their collision frequency with x (as suggested in [14]). Consequently the whole K-NNG
on X can be approximated by simply counting the number of collisions of item pairs, without any distance
computation.
More formally, we define the hashing based approximation of a K-NNG GK(X , E), as a new directed graph

ĜK(X , Ê) where Ê is a set of edges connecting any item x to its K most frequently colliding items in the L
hash tables. In practice, since the number of collisions is a discrete variable, more than K items might have
the same number of collisions and have to be kept in the graph produced. The hash-based approximation of a
K-NNG should therefore rather be seen as a filtering step of the all-pairs graph. A brute-force refinement step
can be applied on ĜK(X , Ê) to get a more accurate approximation during a second stage.

3.3 Balancing issues of LSH-based K-NNG

The LSH-based K-NNG approximation is very attractive in the sense that it does not require any kernel (or
metric) computation. It simply requires building L hash tables and post-processing all collisions occurring in
these tables. Unfortunately, balancing issues strongly affect the performance of this scheme in practice. The
cost of the method is, in fact, mainly determined by the total number of collisions in all hash tables, i.e.

TH(X , L, p) =

L∑
l=1

2p∑
b=1

nl,b.(nl,b − 1)

2
(4)

where nl,b is the number of items in the b-th bucket of the l-th table. For an ideally balanced hash function
and p ∼ log2(N), the cost complexity would be O(L.N). But for highly unbalanced hash functions, the cost
complexity tends rather to be O(L.N2) because the most filled buckets concentrate a large fraction of the whole
dataset (i.e. nl,b = αN).
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4 Proposed method

We now describe our K-NNG approximation method. It can be used either as a filtering step (combined with
a brute-force refinement step applied afterwards), or as a direct approximation of the graph, depending on
the quality of the application required. The method holds for centralized settings as well as for distributed or
parallelized settings, as discussed below.

4.1 Random Maximum Margin Hashing

Rather than using classical LSH functions, our method is based on Random Maximum Margin Hashing [12], an
original hash function family introduced recently and one that is suitable for any kernelized space. In addition
to its nice embedding properties, the main strength of RMMH for our problem is its load balancing capabilities.
The claim of this method is actually that the lack of independence between hash functions is the main issue
affecting the performance of data dependent hashing methods compared to data independent ones. Indeed,
the basic requirement of any hashing method is that the hash function provide a uniform distribution of hash
values, or at least one that is as uniform as possible. Non-uniform distributions increase the overall expected
number of collisions and therefore the cost of resolving them. The uniformity constraint should therefore not
be relaxed too much even if we aim to maximize the collision probability of close points.

4.2 RMMH-based K-NNG approximation

Our K-NNG approximation algorithm now works in the following way:
STEP1 - Hash tables construction: For each item x ∈ X , we compute L p-length binary hash codes h(x)
(using L.p distinct RMMH functions) and insert them in L distinct hash tables.
STEP2 - Local joins: Non-empty buckets of each hash table are processed independently by a local join

algorithm. For each non-empty bucket b, the local join algorithm generates the nc = nb.(nb−1)
2 possible pairs

of items computed from the nb items contained in the bucket. Notice that this algorithm ensures that buckets
can be processed separately and therefore facilitate the distribution of our method. Each emitted pair is simply
coded by a pair of integer identifiers (idi, idj) such that idi < idj (as a coding convention) with 0 < i < nb − 1
and 0 < i.nb + j < nc − 1.
STEP3 - Reduction: All pairs (idi, idj) are mapped onto an accumulator in order to compute the occurrence
of each pair (within the TH emitted pairs). Notice that the occurrence matrix produced does not depend on
the mapping sequence so that each pair can be inserted independently from the other ones, at any time during
the algorithm. This ensures that this reduction step can be easily distributed.
STEP4 - Filtering: Once the full occurrence matrix has been computed, it is filtered in order to keep only
the most similar items and compute our approximate graph ĜK(X , Ê).We recall here that the hashing-based
K-NNG produced by the above algorithms could still be refined by a brute-force algorithm applied on the
remaining pairs.

4.3 Split local joins

Although local joins can easily be distributed, large buckets still affect the overall performance. The local join

algorithm has quadratic space complexity (nc = nb.(nb−1)
2 = O(n2b)) and is therefore, likely to raise memory

exceptions as well as expensive swapping phases. Moreover, we want our distributed framework to support a
wide variety of hash functions, even those with lower balancing capabilities. In the following, we extend the
local join algorithm to process large buckets in parallel and/or distributed architectures with guaranties on
the runtime and memory occupation. In practice, if the number of collisions generated by a given local join
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exceeds a fixed threshold (i.e. nc > cmax), then the local join is split into ns = d nc

cmax
e sub-joins, each being in

charge of at most cmax collisions. Since the number of generated pairs at iteration k is n − k, the number of
generated pairs of an s-length iteration block starting at the ith iteration of the external loop is:

s−1∑
k=0

(nb − i− k) =
1

2
∗ s2 + (nb − i−

1

2
) ∗ s (5)

which must be less than or equal to cmax. The thus defined inequality has two roots of opposite signs s1 and
s2 (s1 > s2); we require s to be equal to bs1c as long as s+ i remains less than or equal to s, nb − i otherwise.

4.4 MapReduce Implementation

As explained in the previous section, all the steps of our hashing-based K-NNG approximation framework can
be easily distributed. A first MapReduce job performs the hash tables construction STEP1 and then, a second
MapReduce job computes STEP2 and STEP3. STEP4 can be easily distributed by using the occurrence
matrix line numbers as input keys to a third job.

4.4.1 Hash tables construction (STEP1)

The first MapReduce job splits the input dataset X into independent chunks of equal sizes to be processed in
parallel. A mapper iterates over the set of its assigned objects features and computes L.p hash values for each
feature. Hash values are concatenated into L p-length hash codes corresponding to L bucket identifiers for
the L hash tables). Each hash code is then emitted along with the table identifier (intermediate key) and the
associated feature identifier (intermediate value). The Reduce function merges all the emitted identifiers for a
particular intermediate key (i.e. bucket identifier within a specific table). The resulting buckets are provided
as input to the second MapReduce job.

4.4.2 Occurrence matrix computation (STEP2 & 3)

The second job processes buckets separately. The map function generates all possible pairs of identifiers of the
processed bucket and issues each pair (intermediate key), possibly with a null intermediate value. The reduce
function counts the number of intermediate values for each issued pair. For efficiency concerns, map outputs
are locally combined before being sent to the reducer. This requires intermediate values to store the cumulated
pair occurrences. With such an optimization, the mapper issues each pair along with its initial occurrence.
Combine and reduce functions simply sum the intermediate values for each issued pair.

5 Experimental setup

This section provides details about the experimental setup including datasets, performance measures and
system environment. Experimental results are reported in Section 6.

5.1 Datasets & Baselines

Our method was evaluated on 2 datasets of different dimensions and sizes:
Shape: a set of 544-dimensional feature vectors extracted from 28775 3D polygonal models.
Audio: a set of 54387 192-dimensional feature vectors extracted from the DARPA TIMIT collection.
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All features were L2 normalized and compressed into 3072-dimensional binary hash codes using RMMH and
LSH. These datasets were first used in [10] to evaluate the LSH method and more recently in [9] to evaluate
the NN-Descent algorithm against the Recursive Lanczos Bisection[6] and LSH. We rely on these datasets to
evaluate our method against the NN-Descent method [9].

5.2 Performance measures

We use recall and precision to measure the accuracy of our approximate KNN Graphs against the exact KNN
Graphs. The exact K-NN Graphs were computed on each dataset using a brute-force exhaustive search to find
the K-NN of each node. The default K is fixed to 100. The default similarity measure between feature vectors
is the inner product. Note that, since all features are L2-normalized, the inner product K-NNG is equivalent
to the Euclidean distance K-NNG. The recall of an approximate K-NNG is computed as the number of correct
Nearest Neighbors retrieved, divided by the number of edges in the exact K-NNG. Similarly, we define the
precision of an approximate K-NNG as the number of exact Nearest Neighbors retrieved, divided by the total
number of edges in the approximate K-NNG.

As for efficiency, we use the number of generated pairs and the Gini coefficient to study the impact of the
different parameters on hash functions used. Finally, we use the Scan-Rate as an architecture and method-
independent measure of the filtering capabilities of approximate KNNG construction methods. It is defined in
[9] as the ratio of the number of item pairs processed by the algorithm to the total number of possible pairs

(i.e N(N−1)
2 ).

5.3 System environment

The NN-Descent code is the same as in [9] and was provided by the authors. It is an openMp parallelized
implementation. To allow fair comparison, we used an openMp-based centralized version of our code. It
iteratively performs steps 1 to 4 (Section 4.1) and finally applies a brute-force refinement step on the remaining
pairs. Experiments were conducted on an X5675 3.06 Ghz processor server with 96 Gbytes of memory.

6 Experimental results

We first evaluate the impact of the hash functions used on load distributions (Section 6.1). We then evaluate
the overall performance of our method in centralized settings (Section 6.2.1) and compare it against the NN-
Descent algorithm (Section 6.2.2).

6.1 Hash functions evaluation

In Figure 1, we report the Gini coefficient for different values of M (Section 4.1). The plots show that hash
tables produced by RMMH quickly converge to fair load balancing when M increases. Gini coefficients below
0.6 are, for instance, known to be a strong indicator of a fair load distribution [11]. As a proof of concept,
very high values of M even provide near-perfect balancing. As we will see later, such values are not usable in
practice since too much scattering of the data also degrades the quality of the generated approximate graph.
The parameter M is actually aimed at tuning the compromise between hash functions independence and the
generalization capabilities of the method [12]. For typical values of M greater than 15, RMMH outperforms
LSH on both datasets.

Figure 2 plots the number of collisions to be processed for increasing values of L and different hash functions.
The results show that the RMMH-based approach generates up to two orders of magnitude fewer collisions than
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Figure 1: Gini coefficient - RMMH-Based Hashing

the LSH-based approach for values of M greater than 15. The number of generated pairs for both datasets do
not exceed 109 pairs and therefore, can be processed in centralized settings. In the following, unless otherwise
stated, the default value of M is 10.
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Figure 2: Total number of collisions

6.2 Experiments in centralized settings

In this section, we first evaluate the overall performance of our method in centralized settings (Section 6.2.1)
and compare it with the NN-Descent algorithm (Section 6.2.2).

6.2.1 Overall performance

Figure 3a summarizes the recall of our method on both datasets for different hash functions and index sizes
(i.e. the number L of hash tables used). The best results are observed for low values of M . The results also
show high recall values even with a small number of hash tables (L = 16 for 90% recall) whereas higher recall
values require a higher number of hash tables (128 hash tables for M = 10, whereas only 64 hash tables are
required for M = 10 for 99% recall).

The results also show that high recall values can be achieved using different values of M . As discussed in
6.1, the higher M is, the fewer collisions are generated and the more hash tables are needed. Figure 3b plots
the scan rate for different hash functions and index sizes. The results shows that 99% recall can be achieved
while considering less than 0.05 of the total N ∗ (N − 1)/2 comparisons (for M = 20) for both datasets. It
is worth noticing that even with low values of M , and therefore low generalization properties (M = 5), the
scan rate did not exceed several percent of the total number of comparisons. This suggests that intermediate
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Figure 3: Impact of the number of hash tables used

values of M generate more accurate approximations of the KNN Graph as they require fewer comparisons for
the same degree of accuracy. In practice, intermediate values of M with a high number of tables appears to be
a reasonable trade-off between accuracy and approximation cost. Conversely, very high values of M degrade
the accuracy of the KNNG approximation.

In Table 1, we compare RMMH against LSH in both efficiency and effectiveness. RMMH clearly outperforms
LSH with fewer hash tables.

Shape Audio
L Recall Time Recall Time

RMMH 128 0.994 3.078 0.982 5.440
LSH 128 0.967 2.616 0.903 3.912
LSH 192 0.984 3.358 0.941 5.382

Table 1: Total Running Time - LSH vs RMMH (M = 10)

Table 2 summarizes the Recall, Scan Rate and CPU time for different values of the minimum collision
frequency considered in the approximate graph. Note that threshold values cannot exceed the number of hash
tables used. The results show that low collision thresholds saved more than 50% of feature comparisons on
both datasets for less than a 4% recall loss.

Shape Audio
thresold Rec. SR CPU Rec SR CPU

1 0,995 0,087 3,078 0,983 0,069 5,440
2 0,981 0,043 1,817 0,951 0,026 3,051
4 0,929 0,022 1,271 0,861 0,009 2,008

Table 2: Impact of the filtering parameter (M = 10, L = 128)

6.2.2 Comparison against State-of-the-art

We used the same NN-Descent settings as in [10] ((ρ = 0.5) for speed and (ρ = 1) for accuracy). We use
M = 10 and two different thresholds for the post processing phase (t = 1 (default) and t = 2) and up to 192
hash tables for high recall rates as discussed in Section 6.2.

Table 3 summarizes the recall and CPU time of both methods under those defined settings. The results
show that our approach yields similar results to the NN-Descent algorithm for both recall rates and CPU costs
using the default threshold. Although our method performs many fewer comparisons than the NN-Descent
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approach, the results show similar running times considering the Local Joins and Reduction costs. Higher
threshold values are likely to further reduce the scan rate and CPU costs accordingly. By putting a threshold
on the frequency collisions, our method achieves both higher recall and faster speed (t = 1). Actually, our
frequency-based approximation beats the NN-Descent high-accuracy setting in all cases. Here again, the results
suggest that higher threshold values achieve better approximations of the KNN Graph.

Shape Audio

ρ Rec. CPU S.R. Rec. CPU S.R.
NND 1 0,978 2,044 0,096 0,942 3,387 0,054
NND 0.5 0,958 2,33 0,057 0,903 4,834 0,033

t L Rec. CPU S.R. Rec. CPU S.R.
Ours 1 64 0,976 1,943 0,060 0,943 3,288 0,044
Ours 1 128 0,995 3,078 0,087 0,983 5,440 0,069
Ours 1 192 0,998 3,943 0,107 0,992 6,854 0,087

Ours 2 64 0,925 1,026 0,027 0,857 1,591 0,013
Ours 2 128 0,981 1,817 0,043 0,951 3,051 0,026
Ours 2 192 0,993 2,597 0,057 0,976 4,335 0,036

Table 3: Comparison against State-of-the-art

Table 4 shows the impact of varying K (i.e. the number of Nearest Neighbors considered in the exact
K-NNG) on both datasets (L = 128 and M = 10). It shows that high recall values can be obtained on both
smaller(K = 1) and larger graphs (K = 20) whereas a sufficiently large K is needed for the NN-Descent to
achieve recall rates (> 90%) as stated in [9].

K 1 5 10 20 100 Scan-rate

Shape 0.999 0.998 0.997 0.994 0.978 0.086
Audio 0.996 0.991 0.988 0.982 0.957 0.069

Table 4: Recall for varying values of K

As a conclusion, our method achieves similar or better performances than the most performant state-of-
the-art approximate K-NNG construction method in centralized architectures. Contrary to this method, our
method has the advantage to be easily distributable and therefore more scalable.

7 Conclusion

This paper introduced a new hashing-based K-NNG approximation technique, which is easily distributable
and scalable to very large datasets. To the best of our knowledge, no other work has reported full K-NN
graphs results on such large datasets. Our study provides some evidence that balancing issues explain the
low performances obtained with a classical LSH-based approach for approximating K-NN graphs. It also
shows that using alternative new hash functions that handle hash tables uniformity can definitely change those
conclusions. We finally described a distributable implementation of our method under a MapReduce framework
and improved the load balancing of this scheme through a split local join strategy. Other perspectives include:
multi-probe accesses to the hash tables, query expansion strategies and metadata management.
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