
Top-k Context-Aware Queries on Streams

Loïc Petit1,3 Sandra de Amo2 Claudia Roncancio3 Cyril Labbé3
1 Orange Labs, France, name.surname@orange.com

2 Federal University of Uberlândia, Brazil, name.surname@ufu.br
3 Grenoble University, France, Name.Surname@imag.fr

Abstract

Preference queries have been largely studied for relational systems but few proposals
exist for stream data systems. Most of the existing proposals concern the skyline, top-k
or top-k dominating queries, coupled with the sliding-window operator. However, user
preferences queries on data streams may be more sophisticated than simple skyline or
top-k and may involve more expressive operations on streams. This paper improves the
existing work on data stream query-answering personalization by proposing a solution
to express and handle contextual preferences together with a large variety of queries in-
cluding one-shot and continuous queries. It adopts a more expressive preference model
supporting context-based preferences, allowing to capture a wide range of situations.
We propose algorithms to implement the new preference operators on stream data and
validate their performance on a real-world dataset of stock market streams.

Résumé

La prise en compte des préférences utilisateur constitue un moyen puissant pour la
personnalisation des réponses dans le cadre de l’évaluation de requêtes. Les préférences
interviennent comme des contraintes faibles permettant de restreindre ou d’élargir les
réponses fournies aux utilisateurs. De nombreux travaux existent sur les préférences
dans le cadre de requêtes sur des SGBD relationnels mais peu pour l’évaluation de
requêtes sur des flux de données. Les propositions existantes concernent essentiellement
des requêtes de type skyline et top-k. Cet article propose une solution qui enrichit
l’existant, d’une part par l’augmentation de l’expressivité des préférences adoptées et,
d’autre part, par l’élargissement des types de requêtes supportées. Nous introduisons
des préférences contextuelles qui sont prises en compte dans l’évaluation de requêtes
qui peuvent porter à la fois sur des relations persistantes et sur des flux de données.
Cette solution est particulièrement intéressante dans le cadre de la gestion de données
ubiquitaires à la personnalisation des réponses et l’adaptation contextuelle jouent un
rôle central.

1

1 Introduction
Query-answering personalization has been attracting much attention in the database com-
munity in recent years [3, 7]. Such works have been motivated by the need to select the
data items that better fit user preferences. This is useful in situations when the number of
potential answers is either too high or too small. When it is too high, user preferences are
used to restrict the answer set by identifying the subset of the most preferred data items. On
the other hand, some queries may involve hard conditions which imply a very small (or even
a disappointing empty) answer-set. In this case, user preferences could be used to enhance
the set of retrieved data by including answers which could be of user interest even if they do
not verify the hard constraints specified in the query.

Numerous application domains such as financial, monitoring and sensor-based applica-
tions require now data stream management. Supporting preference queries on evolving data
is more challenging than their evaluation on persistent data. Contextual preference queries
are particularly helpful to users dealing with data streams. For instance, in a stock market
scenario, buyers may want to know the most interesting deals so far before making their
trading decisions. Some statistical data such as the volatility rate of the stock options in the
last three days or the economic situation of the stock options country can influence their
decision. So, it is possible to support queries as “What are the most interesting deals you
propose given that for stock options coming from countries in bad economic situation in the
last year I prefer those presenting a lower volatility rate in the last three days” may be issued.
The existing proposals on contextual preferences query processing [12, 4] are designed for
conventional DBMS and are not tailored to handle stream data. Besides, few proposals in
the literature support preference queries on data streams [13, 14, 9]. Most of them concern
the skyline, top-k and top-k dominating queries, coupled with the sliding-window operator.
To the best of our knowledge there are no proposal in the literature dealing with contextual
preference query processing on data streams.

This work goes a step beyond by proposing contextual preference queries on both con-
ventional and stream databases. We consider the stream algebra Astral introduced in a
previous paper [17] as the core stream query language. We extend Astral by the introduc-
tion of two preference operators Best and KBest. These operators are adapted from the
preference operators of the query language CPrefSQL originally designed for querying static
data [4].
Main Contributions. The main contributions of this paper can be summarized as follows:
(1) The introduction of the top-k contextual preference queries in a data stream context; (2)
The introduction of two new operators in the Astral algebra designed to query relations and
data streams; (3) The design and implementation of incremental algorithms for evaluating
continuous and instantaneous queries over streams and relations; (4) The implementation of
the preference operators in the original prototype of Astral and their performance evaluation.

This paper is organized as follows: In Section 2, we motivate our proposal by presenting
a real-world scenario where user preferences are naturally influenced by the user context.
Section 3 introduces the main theoretical concepts underlying the preference model and the
stream algebra Astral. In Section 4, we present the Preference Astral algebra incorporating

2

two new preference operators Best and KBest. In Section 5, we present the incremental
algorithms for continuously evaluating the preference operators Best and KBest. In Section 6
we present and discuss some experimental results. Related work are resented in section 7.
Finally, in Section 8 we conclude the article and present some research perspectives.

2 A Motivating Example
Tom is a very cautious investor who likes to get as much information as possible before
making his decisions about buying and selling stocks shares. He has free access to a web site
that provides information about real-time quotations and volatility rates as well as real-time
transactions. These data involve the following data streams and static data stored in a re-
lational DBMS:
• Relation StockOption(StOpName, Category, Country): stores the stock name, its category
(Commodities (c), Info-Tech (it)), and the country where the company headquarters are
located.
• Stream Transactions(OrderID, TTime, StOpName, Volume, Price): a data stream pro-
viding real-time information about stock options transactions. It includes the transaction
time (TT ime), the quantity of shares (V olume) and the price (Price) of the stock option
share.
• Stream Volatility(StOpName, ETime, Rate, Method): a data stream providing real-time
information about the estimated volatility (rate) of stock options. It includes the time of
the estimation (ETime) and the estimation method (Method).

Based on his past experience and the information he reads in the papers, Tom has some
preferences he wants to be taken into account in order to facilitate and speed up his decisions.
His preferences are described by the following statements:
[P1] Concerning commodities stocks, at each moment Tom prefers those with a volatility-
rate less than 0.25. On the other hand, concerning IT stocks, Tom is more aggressive and
prefers those with a volatility-rate greater than 0.35.
[P2] For stock options with volatility-rate greater than 0.35 at present (calculated according
to some method) Tom prefers those from Brazil than those from Venezuela.
[P3] For stock options with volatility-rate greater than 0.35 at present, Tom is interested
in transactions carried out during the last 3 days concerning these stock options, preferring
those transactions with quantity exceeding 1000 shares than those with a lower amount of
shares.

Notice that Tom’s preferences are expressed by means of rules of form IF some con-
text is verified THEN Tom prefers something to something else. Contexts are conditions
involving the values of some data attributes. For instance, in statement [P1] the context
is StockOption.Category = ‘Commodities′ and Tom’s preference is V olatility.Rate ≤ 0.25
better than V olatility.Rate > 0.25. Preference rules may involve streams or relational data
on both the context side and the preference side of the rule.

3

As well as his preferences, Tom’s queries may concern relational and stream data and be
“one-shot” or continuous queries. Here are some of Tom’s:
[Q1] Considering the last 100 transactions with a volume greater than 1000 shares, list my
top 10 most preferred ones.
[Q2] Give me the list of quotations during the last 2 days, concerning the stock options
which most fulfill my preferences.
[Q3] Give me the list of quotations during the last 2 days, concerning only IT stock options
which most fulfill my preferences.
[Q4] Every 30 minutes, give me a complete description of my 10 preferred stock options:
country, category, the last transaction concerning the stock option (volume and quotation),
the volatility rate with its corresponding estimating method.

It is important to emphasize that, differently from the hard constraint expressed by
statements like “IT stock options”, preferences should be viewed as soft constraints: If no
database entry fulfills the hard constraints (for instance, there is no IT stock options in the
database), the result answer-set is empty. On the other hand, if there are not K tuples in
the database which are considered perfect according to the preferences, a list of K tuples
respecting the preference hierarchy is returned instead.

3 Preliminaires
To achieve our work we build-on two existing proposals (1) the Astral algebra proposing
operators to query data stream and relational data together and (2) theoretical foundations
on contextual preferences rules. This Section introduces such proposals. Section 4 and the
following, present our proposal to integrate preferences in Astral queries.

3.1 The Astral Stream Algebra

We use the Astral algebra [17] which provides a formal definition of operators involved in
streams querying. Such a formalism facilitates the expression and understanding of queries.
Putting aside preferences and the top-k operator, queries presented in section 2 can be
expressed in Astral. This section provides the very few definitions necessary to introduce
Astral queries. Our examples refer to queries Q1, Q2, Q3 and Q4 of section 2. We’ll use
Q1’, Q2’, Q3’ and Q4’ which are their counterpart without preferences.

In Astral, streams and relations (denoted by S and R respectively in the following) are
two different concepts [1]. A stream S is a possibly infinite set of tuples s with a common
schema containing two special attributes: a timestamp t and, the position in the stream, p 1.
A temporal relation R is a step function that maps a time identifier t to a set of tuples R(t)
having a common schema. Classical relational operators, as selection σ, projection π and
join �, are extended to temporal relations. The extension of π and σ for streams is simple
whereas joins are very complex. For example, σV olume>10000(Transactions) is the stream

1These definitions can be extended using the notion of batch [17].

4

of transactions having V olume > 10000, whereas σCategory=it(StockOption) is a temporal
relation containing only tuples for which Category is it .

A temporal relation can be extracted from a stream using windows operators. Astral
provides an extended model for windows operators including positional, temporal and non
standard cross domain windows (e.g. slide n tuples every δ seconds). The following expres-
sions represent some very useful windows:
(a) S[L] contains the last tuple of a stream;
(b) S[A/L] is the partitioned window containing the last tuple of each sub-stream identified
with the attribute A. For example Transaction[StOpName/L] contains the last known
transaction for each stock option.
(c) S[N slide ∆] is a sliding window of size N sliding ∆ every ∆. N and ∆ are
either a time duration or a number of tuples. For instance, Q1’ is written as
(σV olume>10000(Transactions))[100 slide 1]. The window is 100 tuples large and slides of
1 tuple whenever one new tuple arrives. Q2’ is πPrice(Transactions[2 days slide 1]). The
window is 2 days large and slides of 1 tuple whenever one new tuple appears.

A stream can be generated from a temporal relation using a streamer operator. Among
them, IS(R) produces the stream of tuples inserted in R. Streamers and windows may be
composed in order to join two streams or a stream and a relation. Given a window description
W , a streamer Sc and a join condition c, the join operator (stream×relation)→stream can be
defined as: S �c R = Sc(S[W] �c R). In the following we will use: S �c R = IS(S[L] �c R).
The stream S �c R contains tuples generated by updates in R. Other types of join operators
can be defined. For instance, tuples can be added to the output stream only for new tuples in
S and not when R is updated: the semi-sensitive-join operator (stream×relation)→stream
produces a stream resulting from a join between the last tuple of the stream and the relation
at the time of the last tuple of the stream: S c R = IS(S[L] �c R(τS(S[L]))). Here τS
denotes the function that gives the timestamp of a tuple in the stream S. (see [17] for more
details). For instance, query Q3’ is written as

πPrice((Transactions (σCategory=IT (StockOption)))[2 days slide 1]).

The expression for query Q4’ provides a stream built from the join between the Transaction
stream, the last known values of the V olatility and the StockOption relation. The required
windows expression is [W] = [30 min slide 30 min].

3.2 The Preference Model

In this section we present the main concepts concerning the logical formalism for specifying
and reasoning with preferences. Details can be found in [4, 5].

Let R be a relational schema with attributes Attr(R) = {A1, A2, ..., An}. R can be a
non-temporal or temporal relational schema. If R is temporal then one of its attributes is T
(time). For each attribute A ∈ Attr(R), let dom(A) be the set of values of A (the domain
of A). The set Tup(Attr(R)) = dom(A1) × dom(A2) × ... × dom(An) is the set of all
possible tuples over Attr(R).

5

StOpName Cat Country ET ime Rate Method
t1 MS it USA T1 0.30 M1
t2 AP it India T2 0.55 M1
t3 USSteel c USA T1 0.20 M2
t4 Petr4 c Brazil T2 0.40 M2
t5 Bel5 m Venezuela T3 0.55 M2

(a)

t

t

t

t

t
1

23

4

5

(b)

Figure 1: Instance of StockOption � Volatility and Better-than Graph associated to Γ

Definition 1 (Contextual Preference Rules) A conditional preference rule (or cp-rule
for short) over the relational schema R is a statement ϕ of the form: ϕ: u→ Q1(X) � Q2(X)
[W] where:
• X is a non-temporal attribute of R, W ⊆ Attr(R), X �∈ W ,
• Qi(X) (for i = 1, 2) is a statement of the form Xθa where θ ∈ {=, �=,≤,≥, <,<} and a ∈
dom(X).
• There is no x ∈ dom(X) satisfying both Q1(X) and Q2(X) simultaneously. For instance,
X > 1 and X ≤ 3 cannot be considered as statements Q1(X) and Q2(X) in the right side
of a cp-rule, since X > 1 ∩ X ≤ 3 = (1, 3] �= ∅.
• u is a conjunction of simple statements of the form: A1θ1a1 ∧ ... ∧ Akθkak, where θi ∈ {=
,≤,≥, <,<} for i = 1, ..., k. We assume X and the attributes in W do not appear among
the attributes of u.

The formula u in the left side is called the context of the rule ϕ. The statement Q1(X) �
Q2(X) in the right side is called the preference statement and the attributes in W are called
the ceteris paribus attributes. This will be clearer in the sequel. A tuple t ∈ Tup(Attr(R))
is said to be compatible with a cp-rule ϕ if t satisfies its context. For instance, the tuples
t1 = (1, 2, 4, 1) and t2 = (0, 2, 5, 6) over the relation schema R(A,B,C,D) are compatible
with the cp-rule (A < 2 ∧ B = 2 ∧ C > 3) → (D ≤ 2 � D > 4). The context of
this cp-rule is the formula (A < 2 ∧ B = 2 ∧ C > 3) and its preference statement is
(D ≤ 2 � D > 4). Intuitively, this cp-rule means that between two tuples compatible with
the context (A < 2 ∧B = 2 ∧C > 3) I prefer the one with D ≤ 2 than the one with D > 4.
So, between the tuples t1 and t2, I prefer t1.
A contextual preference theory (cp-theory for short) over R is a finite set of cp-rules Γ over
R. We denote by Attr(Γ) the set of attributes appearing in the cp-rules of Γ. Notice that
Attr(Γ) ⊆ Attr(R).

Example 1: Let us consider the two preference statements P1 and P2 of our mo-
tivating example. They can be expressed by the following cp-theory over the schema
T (StOpName, Cat, Country, ET ime,Rate,Method):
• ϕ1: Cat = c→ (Rate < 0.25 � Rate ≥ 0.25), [M]
• ϕ2: Cat = it→ (Rate ≥ 0.35 � Rate < 0.35), [M]
• ϕ3: Rate > 0.35→ (Country = Brazil � Country = V enezuela)

6

The attributes between brackets mean that in order to compare two tuples by means of
a cp-rule, these tuples must coincide on these attributes. For the other attributes there is no
restriction. For instance, in the scenario of Example 1, let t1 and t2 as described in Figure
1(a). Then t1 and t2 can be compared by using the rule ϕ2, since they have the same context
(Cat = it), the Rate (volatility rate) of t2 is greater than 0.35 and the Rate of t1 is lower
than 0.35, and the method used to measure Rate is the same for both tuples.

It is clear by now that a cp-rule ϕ over R induces a binary relation (denoted by �ϕ on
the set Tup(R): the set of pairs (t, t′) such that t is better than t′ according to ϕ. Of course,
this binary relation is not necessarily an order relation, since it is not always transitive. In
the following we define the notion of Preference Relation induced by a cp-theory Γ.

Definition 2 (Preference Relation) Let Γ be a contextual preference theory over a re-
lational schema R (temporal or non-temporal). The Preference Relation associated to Γ
(denoted by �Γ) is defined as: �Γ = (

⋃
ϕ∈Γ �ϕ)

∗, where ∗ denotes transitive closure.

Example 2: Let us consider the cp-theory Γ of Example 1. Let us consider instances
I and J of relation schemas StockOption and V olatility respectively, such that the result
of StockOption � V olatility(I, J) is given in Figure 1(a). It is clear that t3 �ϕ1 t4 and
t4 �ϕ3 t5. Then, by transitivity, we conclude that t3 �Γ t5. Notice that t3 and t5 cannot
be compared using only one rule in Γ. However, they can be compared by transitivity using
different rules in Γ.
Discussion. We say that a cp-theory Γ is consistent if and only if the induced order >Γ is
irreflexive and consequently, a strict partial order over Tup(R). In [18], a sufficient condition
for ensuring consistency of a cp-theory is given. This condition involves testing the acyclicity
of the dependency graph associated to the cp-theory and its local consistency. For lack of
space we omit the details. In this paper, we will suppose our cp-theories are consistent, that
is the associated Preference Relation �Γ is a strict partial order. For more details on the
theoretical foundations and consistency test see [5].

4 Introducing Preference Operators into Astral
Let us focus on the integration of contextual preferences in the Astral algebra. This Section
presents the syntax and semantics of the preference operators integrated to Astral whereas
Section 5 presents the algorithms for implementing them.

4.1 Global approach

The objective of our proposal is to provide an integrated solution where the full expressivity
of both, queries and preferences are available. We propose to capture the semantics of the
preference evaluation as algebraic operators that extend the Astral algebra. Such preference
operators can be part of instantaneous and continuous queries performing on streams and
relations, and using any of the existing operators. Particularly, queries involving data streams

7

can use the wide variety of temporal, positional and hybrid windows [16]. The preference
operators calculate user preferred answers according to the available cp-theory. Each user
provides the system with his/her preferences (a cp-theory Γ) which become some kind of
user profile. During querying, these preferences are used for answer customization if the user
asks for. Concretely, we will allow powerful contextual most preferred and top-k queries by
the introduction of two operators:
(1) The BestΓ operator selects a subset of optimal tuples according to user preferences Γ.
(2) The KBestΓ operator selects the K most preferred tuples respecting the preference
hierarchy specified by Γ. For the sake of simplifying the presentation we omit the subscript
Γ whenever it is implied by the context.

R � (StockOption � Π\TV olatility[SOName/L])

4.2 Best and KBest operators

The Best operator selects from a given temporal or non-temporal relation those tuples which
are not dominated by other tuples according to the preference order inferred from Γ (see
Definition 2).

Definition 3 (Best) Let R be a relational schema and Γ be a cp-theory over R. Let r(t)
be an instance over R at time t Best(r(t)) = {u ∈ r(t) |� ∃v ∈ r(t) such that v �Γ u }

The operator KBest selects the top-k tuples according to the preference hierarchy dic-
tated by Γ. Intuitively, KBest(I, k) returns the set of k tuples of I having the minimum
number of tuples dominating them in the preference hierarchy. In order to define its seman-
tics, we need first to introduce the notion of level of a tuple u (denoted by l(u)) according
to a cp-theory Γ. The level of a tuple reflects “how far” is the tuple from the most preferred
ones (those which best fit the user preferences).

Definition 4 (Level) Let R be a relational schema and Γ be a cp-theory over R. Let r(t) be
a tuple-set or instance of R at time t, and let tuple u ∈ r(t). The level of u, l(u), according
to Γ is inductively defined as follows:

• If there is no u′ ∈ r(t) such that u′ �Γ u, then l(u) = 0.

• Otherwise l(u) = 1 + max{l(u′) | u′ �Γ u}

It is easy to show that if u � u′ then l(u) < l(u′). The reverse implication does not hold.
The semantics of the KBest operator is defined as follows.

Definition 5 (KBest) Let R be a temporal (or non-temporal) relation and Γ be a cp-theory
over R. Let r(t) be a tuple-set or instance of R at time t. KBest(r(t), k) is the set of the k
tuples ∈ r(t) with the lowest levels. The positional order is used to sort tuples at the same
level.

8

Algorithm 1: Compare(t1, t2, ϕ)
Data: ϕ : u→ Q1(X) > Q2(X) [W]
Result: {1,−1, ∅},

resp. {t1 >ϕ t2, t1 <ϕ t2, inc.}
if t1 �|= u || t2 �|= u then return ∅
foreach V ∈ W do

if t1(V) �= t2(V) then return ∅
if t1 |= Q1(X) & t2 |= Q2(X) then

return 1
if t2 |= Q1(X) & t1 |= Q2(X) then

return −1
return ∅

Algorithm 2: CompT(t1, t2,Γ)
(without transitive closure)
Data: Γ = {ϕ1, ..., ϕk} a cp-theory
Result: {1,−1, ∅},

resp. {t1 >Γ t2, t1 <Γ t2, inc.}
foreach ϕk ∈ Γ do

r ← Compare(t1, t2, ϕk)
if r �= ∅ then return r

return ∅

Example 3: Let us consider the cp-theory Γ = {ϕ1, ϕ2, ϕ3} of Example 1 and the in-
stantaneous relation I of Figure 1(a). Figure 1(b) shows the Better-Than Graph G (BTG)
associated to cp-theory Γ over I. The nodes are the tuples of I. An edge (ti, tj) expresses
that ti is preferred to tj according to a rule of Γ. A dotted edge (ti, tj) means that ti is
preferred to tj by transitivity. We have that Best(I) = {t1, t3}, since these are the tuples
which are not dominated by others. Note that level(t1) = level(t3) = 0, level(t2) = level(t4)
= 1 and level(t5) = 2. So, KBest(I, 3) = {t1, t3, t2}. As t2 and t4 have the same level in the
preference hierarchy the positional order is used to decide between them.

Let us consider the query Q2 of section 2. It is expressed in the extended algebra by:

πPrice Best(Transactions[2 days slide 1])

5 Best and KBest Algorithms
This section presents the algorithms we propose to evaluate the Best and KBest operators
(see section 5.2). As such operators require the preference hierarchy of tuples which is
represented by a BTG, the algorithms to create the BTG are first introduced in section 5.1.
Section 5.3 presents an incremental alternative to manage the BTG. In this case it is assumed
that the cp-theory (i.e. the user’s preferences) does not change during query evaluation.

5.1 The Preference Hierarchy and the Better-Than Graph

First and foremost, we introduce the algorithm to establish the preference order between two
tuples t1 and t2 according to a rule ϕ. The straight forward Algorithm 1 returns ∅ if t1 and t2
are incomparable, 1 if t1 is more preferred than t2 and -1 otherwise. Algorithm 2 extends the
comparison to a cp-theory Γ. It relies on the set of rules (ϕn) to identify the preference order.
However, it does not compute the transitive closure as stated in the cp-theory definition.
The transitivity will be computed in the preference algorithms.

9

Algorithm 3: G.Insert ; Insert
a tuple in the BTG
Input: A tuple s,Γ and the

BTG structure
L← Prec.keys()∪Src
Src.add(s)
foreach s′ ∈ L do

r ← CompT(s, s′,Γ)
if r > 0 then

Src.remove(s′)
Prec.put(s′, s)
Next.put(s, s′)

else if r < 0 then
Src.remove(s)
Prec.put(s, s′)
Next.put(s′, s)

Algorithm 4: Graph.Delete ; Removes a tuple
from the BTG
Input: A tuple s and the BTG structure
Src.remove(s) ; P ← Prec.remove(s) ;
Dom← Next.remove(s)
foreach s′ ∈ P do

Anc← Next.get(s′)
if Anc.size() = 1 then Next.remove(s′)
else if r < 0 then Anc.remove(s)

foreach s′ ∈ Dom do
Anc← Prec.get(s′)
if Anc.size() = 1 then

Src.add(s′)
Prec.remove(s′)

else if r < 0 then Anc.remove(s)

Better-Than graph: The Best and KBest preference operators are applied on a tuple-set
TS and require the BTG of TS. For its implementation we adopt the Graph(Next, P rec, Src)
defined as follows: Next associates to each tuple the list of its direct dominated tuples. Prec
associates to each tuple the list of tuples that directly dominate it. Src, the no-dominated
tuples, that is the sources of the graph. From a formal point of view:

Next = s ∈ TS �→ {s′ ∈ TS, ∃ϕn ∈ Γ, s >ϕn s′}
Prec = s ∈ TS �→ {s′ ∈ TS, ∃ϕn ∈ Γ, s <ϕn s′}
Src = {s ∈ TS, Prec(s) = ∅}

To provide good performance, the implementation of the graph uses hash-sets and hash-
maps. The Next and Prec functions also have a keys() method defined by: s ∈ F.keys()⇔
F (s) �= ∅.

The construction and maintenance of the graph require Insert and Delete methods. To
insert a tuple, Algorithm 3 iterates over the graph to update Next, Prec and the Src set. As
the cost of insertion and deletion in a hash structure can be considered as O(1), the global
cost of the insertion of a tuple in the graph is O(|G|). The deletion of a tuple s, presented
in Algorithm 4, is an iteration over the nodes connected to the one we delete2. The cost is
O(degree(s)).

Given a known cp-theory Γ and a tuple-set, the construction of the entire BTG relies on
the insert method (see Algorithm 6).

2As a recall, in graph theory, the number of edges connected to a node is called the degree of a node.

10

Algorithm 5: Calculate KBest(R)(t)

Data: The BTG structure, k the number of required tuples
Res ← new TreeSet() ; /* Ordered set */
if k < |Src| then /* Src contains more than k best items */

N ← |Src| − k ; /* The positional order in Src is used */
foreach s ∈ Src do /* to keep the k more "recent" items */

if N = 0 then Res.add(s)
else N ← N − 1

return Res
NextLvl ← Src; id← 0; PrecCount ← new HashMap()
while id < k and id < |Src|+ |Prec.keys()| do

if Buffer = ∅ then /* Buffer contains tuples with the same level */
foreach t ∈NextLvl do

Buffer.push(t)
NextLvl.clear()

t← Buffer.pop()
foreach s ∈ Next.get(t) do /* For each node dominated by t */

n←PrecCount.get(s)
if n =null then n =Prec.get(s).size()
if n = 1 then NextLvl.add(s); /* s is part of the next level */
else PrecCount.put(s, n − 1); /* There are more nodes to browse */

Res.add(t.copy(id++)); /* Update the positional order */
return Res

5.2 Evaluation of Best and KBest

By definition, the Graph includes Src which corresponds to the most preferred tuples. Src
is the answer of the Best operator. However, Algorithm 3 can be optimized by avoiding the
entire construction of the BTG. The Prec.put and Next.put sequences can be suppressed
from it. This variant will be named Src in section 6. It’s complexity is so reduced toO(|Src|).
The complexity of Best(R)(t) becomes O(NS) where N = |R(t)| and S = |Best(R)(t)|.

The main algorithm used to compute KBest from the BTG is a Kahn-topological sort
limited to k results. See Algorithm 5.

Its complexity is majored by the complexity of the Kahn algorithm which is O(N +
|Next|). The limitation to k introduces a global factor k

N
. Leading to O(k+ kD)), where D

is the average degree of each node (majored by O(N)). The complexity of KBest is therefore
O(N2). Moreover, as k is usually small compared to N , and D is more likely to be very
small compared to N (many tuples are not comparable) then the major complexity factor
comes from the construction of the BTG.

11

Algorithm 6: Create BTG
Input: A tuple-set TS
Data: The BTG structure
foreach s ∈ TS do Graph.Insert(s)

BTG Incremental BTG
Best O(N.S) O(∆.N)

KBest O(N2) O((∆ + k)N)

Table 1: Best/KBest complexity

Algorithm 7: Incremental BTG
Input: δ−R and δ+R
Data: The BTG structure
foreach s ∈ δ−R do

Graph.Remove(s)
foreach s ∈ δ+R do

Graph.Insert(s)

5.3 Incremental Evaluation of BTG

This section introduces the obtention of BTG in an incremental way. This is motivated by
queries over data streams where preferences are evaluated on sequences of windows. The
BTG is required for the tuple-set contained in the current window. As two successive windows
may overlap, then the new BTG can be constructed by incremental updates of the current
one. The implementation of Astral’s window sequences makes available two delta sets wrt
the current window and the next one: δ−R are the tuples that "exit" from the window and,
δ+R are the ones arriving for the new window. There is no intersection between these sets.
These delta sets are used to obtain the BTG of the new window based on the preceding one
as shown in Algorithm 7.

The complexity of updating the BTG is O(∣∣δ−R
∣
∣ .D +

∣
∣δ+R

∣
∣ .N), where D is the average

degree of a node in the graph. If we consider that the size of the δR are similar and that D
is ruled by O(N) then the complexity becomes O(|δR| .N).

Table. 1 hereafter summarizes the complexity of the preference operators for the two
BTG construction approaches. It is worth noting that the incremental approach is really
interesting if the delta sets are small compared to the total number of nodes. A large portion
of the current BTG can be reused for the new one. If it is not the case the BTG creation
"from scratch" performs better.

Learning inferred preferences. The proposed implementation applies the mathematical
definition of the preference order and does not keep trace of inferred preferences. For instance,
for tuples s1, s2, s3, if s1 <Γ s2 and s2 <Γ s3 then by transitivity s1 <Γ s3. Now, if s2 is
no more in the current scope, we would say s1 �<Γ s3. However, at some point in time
it was known that s1 <Γ s3 and this knowledge could be reused. A small change in the
Graph.Remove function allows us to provide that semantics if desired. When removing a
node, the preceding nodes will be linked to the following nodes. The global complexity
doesn’t change.

12

(a) Varying ∆ on KBest (for N = 500) (b) Varying N on KBest (for ∆ = N)

Figure 2: Computing time of Incremental BTG, Create BTG and Src maintenance.

6 Experimental Results
The algorithms presented in this paper have been implemented as extensions of the Astral
DSMS Prototype3. These extensions have been facilitated by its SOA architecture. We
performed experiences to study the behaviour of both the Best and the KBest operators.
Experimentation Setup: A quad-core Intel Xeon 2.6GHz computer with 6GB of RAM
is used along with the Sun/Oracle 1.6 JVM, an Apache Felix OSGi platform with Astral.
30, 000 tuples have been gathered from real-world quotes4. We used the preferences presented
in Section 2 and the queries of the running example. Let us focus here on the experiments
with queries in the style of Q3 and Q4 of Section 2. These are top-k queries over stream.

S = Transaction (V olatility[StOpName/L] � StockOption)

The query with the KBest operator uses sliding windows as follows: KBest(S[N slide ∆], k)
Results: Experiments show that the evaluation time of KBest is dominated by the
construction/update of the BTG. We also observed the evolution of the structure of the
BTG from one window to the next one: the maximum level varies from 2 to 6 and the
number of non-dominated tuples varies from 1 to N . Big changes in the structure of the
graph are bad cases for the incremental BTG algorithm (Algorithm 7) of the KBest operator.

Figure 2(a) shows the computing time of the two algorithms of BTG: create (Algorithm 6)
and incremental (Algorithm 7). It also shows the time for the algorithm reduced to the Src
maintenance. This can be used for the Best operator. In the experiments we used several
window sizes (N) and rates (∆). We noticed that changes in the rate do not impact the time
for create BTG, whereas the incremental algorithm performs 6 times better for a N/∆ ratio
= 10. Surprisingly, the two BTG algorithms behave similarly when ∆ ∼ N which correspond

3Available at http://astral.googlecode.com under Apache 2 Licence
4Dump provided by Dukascopy’s Data Export service Available at http://www.dukascopy.com/swiss/

english/data_feed/csv_data_export

13

to few or no intersection between successive windows. This means that in the incremental
version, the deletions in the BTG do not take long time compared to insertions. This may
be not true when the BTG is a strongly connected graph with nodes with high level (though
very unlikely in practice).

The variation of the size of the window (figure 2(b) with ∆ = N) shows that the behavior
is not impacted by the number of tuples involved. As expected, the evolution is N quadratic
and the incremental algorithm strictly follows the performance of the create algorithm.

7 Related work
The problem of enhancing well-known query languages with preference features has been
tackled in several recent and important work in the area. For a comprehensive survey
on preference modeling, languages and algorithms see [10]. Information related to sliding
windows and streams may be found in [11, 17]. In this section we present some related work
concerning contextual preference support in traditional databases and preference support in
stream data.

Contextual Preference Support. In the database field, several proposals for incorpo-
rating context in query languages exist in the literature. In [12] preferences are expressed
in a quantitative format, that is, by means of scores associated to attribute-value clauses.
A contextual query is a standard query enhanced with a user context. The main problem
tackled in these papers is identifying the preferences that are most relevant to a contextual
query and presenting an algorithm to locate them. The approach we adopt in this paper
follows a qualitative model to express preferences: preferences are expressed by a (small)
set of rules from which is inferred a strict partial order on tuples. Moreover, we assume
that the contextual preferences are given and incorporated into the query language syntax.
Qualitative approaches has many advantages when compared to quantitative ones due to
their conciseness and deduction capability.

Top-k Preference Queries. In [6] the top-k queries have been introduced in a quantitative
preference model setting, that is, where preference between tuples is expressed by a score
function defined over the dataset. The top-k dominating queries have been introduced in
[15] as an extension of the skyline queries of [3] which were originally designed to return the
most preferred tuples, without any user control on the size of the result. A top-k dominating
query returns the k tuples which dominated the maximum amount of tuples in the database.
This concept is orthogonal to the skyline and pareto queries, as well as to the approach
CPrefSQL we adopt in this paper.

Preference Support on Stream Data. Most work on preference queries in data streams
[13, 14, 9] concern methods for the continuous evaluation of skyline queries, top-k queries and
top-k dominating queries under the sliding window model. In these proposals, a preference
operator is coupled with two forms of the sliding window operator over data streams: the

14

count-based and the time-based ones. In the count-based sliding window the last N tuples
of a stream are returned and for each arriving tuple, the oldest one expires. In the time-
based sliding window, the active tuples are those arrived during the last T time instants. The
preference operators are applied to the set of tuples returned after a sliding window execution
over the stream. To the best of our knowledge no previous work exists that proposes a stream
algebra incorporating both stream and preference operators. A comprehensive survey on
continuous processing of skyline, top-k and top-k dominating queries can be found in [8].

Contextual Preferences on Data Streams. A recent work treating contextual pref-
erences in data streams (coming from sensors) is [2]. The authors propose a preliminary
and informal methodology described through a real-world example that tries to combine the
research topics of context-awareness, data mining and preferences. The paper does not tack-
les the problem of incorporating the discovered preferences into a query language on sensor
data.

8 Conclusion and Future Work
This paper proposes an integrated solution to support user personalized queries in rich data
environments involving real time data streams and persistent data and providing powerful
querying capabilities. Instantaneous and continuous preference queries are supported. They
can benefit of the whole expressivity of Astral and particularly of the large variety of window
support (positional, temporal and cross-domain windows) to manage data streams. The
contributions of this work include the definition and implementation of preference operators
as an extension of Astral. Our experiments allowed to identify patterns of queries (based
on the window characteristics) that can be used to decide the best strategy to optimize the
query evaluation. Our future research will focus on new optimization approaches and on the
distributed evaluation of the preference queries.
Acknowledgment: This work is partially supported by CAPES, the STIC-AmSud ALAP
project, CNPq and FAPEMIG and the project BQR Arteco of the Grenoble Institute of
Technology. We also would like to thank the Sigma team and M. Echenim of the LIG
laboratory for their support.

References
[1] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, and M. Datar. STREAM: The Stanford

Data Stream Management System. Data Stream Management: Processing High-Speed
Data Streams, Jan. 2004.

[2] D. Beretta, E. Quintarelli, and E. Rabosio. Mining context-aware preferences on re-
lational and sensor data. In 6th International Workshop on Flexible Database and In-
formation System Technology (FlexDBIST 2011)in conjonction with the 22nd Interna-

15

tional Conference on Database and Expert Systems Applications (DEXA), pages 116–
120, 2011.

[3] S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline operator. In Proc. 17th
International Conference on Data Engineering (ICDE 2001), Germany, pages 412–430,
2001.

[4] S. de Amo and F. Pereira. Evaluation of conditional preference queries. Proceedings
of the 25th Brazilian Symposium on Databases, October 2010, Belo Horizonte, Brazil.
Journal of Information and Data Management (JIDM)., 1(3):521–536, 2010.

[5] S. de Amo and F. Pereira. A context-aware preference query language: Theory and
implementation. Technical report, Universidade Federal de Uberlândia, School of Com-
puting, 2011.

[6] V. Hristidis, N. Koudas, and Y. Papakonstantinou. Prefer: A system for the efficient
execution of multi-parametric ranked queries. In Proceedings of ACM SIGMOD Inter-
national Conference on Management of Data, Santa Barbara, CA, USA, pages 259–270,
2001.

[7] W. Kießling and G. Köstler. Preference sql - design, implementation, experiences. In
Proceedings of the Int. Conf. on Very Large Databases, pages 990–1001, 2002.

[8] M. Kontaki, A. Papadopoulos, and Y. Manolopoulos. Continuous processing of prefer-
ence queries on data streams. In 36th International Conference on Current Trends in
Theory and Practice of Computer Science (SOFSEM 2010), 2010.

[9] M. Kontaki, A. N. Papadopoulos, and Y. Manopoulos. Continuous top k-dominating
queries. Technical report, Aristotle University of Thessaloniki, 2009.

[10] G. Koutrika, E. Pitoura, and K. Stefanidis. Representation, composition and application
of preferences in databases. In International Conference on Data Engineering (ICDE),
pages 1214–1215, 2010.

[11] J. Krämer and B. Seeger. Semantics and implementation of continuous sliding window
queries over data streams. ACM Trans. Database Syst., 34(1):4:1–4:49, Apr. 2009.

[12] K.Stefanidis and E.Pitoura. Fast contextual preference scoring of database tuples. In
Proceedings of the International Conference on Extending Database Technology (EDBT),
pages 344–355, 2008.

[13] M. Morse, J. M. Patel, and W. Grosky. Efficient continuous skyline computation.
Information Sciences, 177:3411–3437, 2007.

[14] K. Mouratidis, S. Bakiras, and D. Papadias. Continuous monitoring of top-k queries
over sliding windows. In Proceedings of SIGMOD, pages 635–646, 2006.

16

[15] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline computation in database
systems. ACM Transactions on Database Systems, 30:41–82, 2005.

[16] L. Petit, C. Labbé, and C. L. Roncancio. An Algebric Window Model for Data Stream
Management. In Proceedings of the 9th International ACM Workshop on Data Engi-
neering for Wireless and Mobile Access, pages 17–24. ACM, 2010.

[17] L. Petit, C. Labbé, and C. L. Roncancio. Revisiting Formal Ordering in Data Stream
Querying. In Proceedings of the 2012 ACM Symposium on Applied Computing, New
York, NY, USA, 2012. ACM.

[18] N. Wilson. Extending cp-nets with stronger conditional preference statements. In AAAI,
pages 735–741, 2004.

17

